Na Mecânica Quântica, é possível que uma partícula esteja em dois ou mais estados ao mesmo tempo. Uma famosa metáfora denominada o gato de Schrödinger expressa esta realidade. Imagine que um gato esteja dentro de uma caixa, com 50% de chances de estar vivo e 50% de chances de estar morto; para a Mecânica Quântica, até abrirmos a caixa e verificarmos como está o gato, ele deve ser considerado vivo e morto ao mesmo tempo. A esta capacidade de estar simultaneamente em vários estados chama-se superposição.
Um computador clássico tem uma memória feita de bits. Cada bit guarda um "1" ou um "0" de informação. Um computador quântico mantém um conjunto de qubits. Um qubit pode conter um "1", um "0" ou uma sobreposição destes. Em outras palavras, pode conter tanto um "1" como um "0" ao mesmo tempo. O computador quântico funciona pela manipulação destes qubits.
Um computador quântico pode ser implementado com alguns sistemas com partículas pequenas, desde que obedeçam à natureza descrita pela mecânica quântica. Pode-se construir computadores quânticos com átomos que podem estar excitados e não excitados ao mesmo tempo, ou com fótons que podem estar em dois lugares ao mesmo tempo, ou com prótons e nêutrons, ou ainda com elétrons e pósitrons que podem ter um spin ao mesmo tempo "para cima" e "para baixo" e se movimentam em velocidades próximas à da luz. Com a utilização destes, ao invés de nano-cristais de silício, o computador quântico é menor que um computador tradicional.
O principal ganho desses computadores é a possibilidade de resolver algoritmos num tempo eficiente, alguns problemas que na computação clássica levariam tempo impraticável (exponencial no tamanho da entrada), como por exemplo, a fatoração em primos de números naturais. A redução do tempo de resolução deste problema possibilitaria a quebra da maioria dos sistemas de criptografia usados atualmente. Contudo, o computador quântico ofereceria um novo esquema de canal mais seguro.
Um computador quântico pode ser implementado com alguns sistemas com partículas pequenas, desde que obedeçam à natureza descrita pela mecânica quântica. Pode-se construir computadores quânticos com átomos que podem estar excitados e não excitados ao mesmo tempo, ou com fótons que podem estar em dois lugares ao mesmo tempo, ou com prótons e nêutrons, ou ainda com elétrons e pósitrons que podem ter um spin ao mesmo tempo "para cima" e "para baixo" e se movimentam em velocidades próximas à da luz. Com a utilização destes, ao invés de nano-cristais de silício, o computador quântico é menor que um computador tradicional.
O principal ganho desses computadores é a possibilidade de resolver algoritmos num tempo eficiente, alguns problemas que na computação clássica levariam tempo impraticável (exponencial no tamanho da entrada), como por exemplo, a fatoração em primos de números naturais. A redução do tempo de resolução deste problema possibilitaria a quebra da maioria dos sistemas de criptografia usados atualmente. Contudo, o computador quântico ofereceria um novo esquema de canal mais seguro.
Computadores quânticos são diferentes de computadores clássicos tais como computadores de DNA e computadores baseados em transístores, ainda que estes utilizem alguns efeitos da mecânica quântica.
O computador de DNA é uma variante do computador que utiliza o DNA e a biologia molecular ao invés das tecnologias tradicionais baseadas em silício.
Nenhum comentário:
Postar um comentário